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Asymmetric flow between parallel rotating disks 
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Flows occurring between parallel rotating disks have recently been generalized by 
Parter & Rajagopal (1984) to include solutions that are not axisymmetric. They prove 
existence, whereas in the present paper we report, for the first time, numerical results 
for two cases: (i) rotation about a common axis, and (ii) rotation about distinct axes. 
Calculations were performed for two values of the Ekman number E = v /d2w at  the 
relative disk rotations of s = 0.8, s = 0 and s = -0.25, where s = w,/w,. 

1. Introduction 
Kkman’s (1921) pioneering study of steady axisymmetric flow induced by a single 
rotating disk has been followed by intensive studies of flow due to a single disk and 
flow between two disks rotating about coincident axes. These studies cover a broad 
spectrum. They range from papers primarily concerned with the physics and/or the 
numerical modelling of the problem, to those in which formal and rigorous 
mathematical results are established. Numerical calculations have been carried out 
by Lance & Rogers (1961), Pearson (1965), Mellor, Chapple & Stokes (1968), 
Greenspan (1972), Nguyen, Ribault & Florent (1975), Roberts & Shipman (1976), 
Holodniok, KubiEek & HlavaEek (1977, 1981), Wilson & Schryer (1978). Adams & 
Szeri (1982), Keller & Szeto (1983), Dijkstra & van Heijst (1983) and Szeri ~t al. 
(1983b). Despite such a detailed study, basic questions regarding the ‘existence’ and 
‘uniqueness ’ of these solutions remain unanswered. A discussion of these topics can 
be found in a recent review article by Parter (1982). 

All the above studies employ the classical Karman assumption, viz. that the axial 
velocity is independent of radial position and that the flow is axisymmetric. Recently 
Berker (1979) considered the flow between corotating disks and established a 
one-parameter family of solutions. The only axisymmetric solution in this family is 
the rigid-body motion; thus it is just this solution that would follow from Karman’s 
assumptions. I n  the light of Berker’s work, one is advised to reexamine the classical 
problem of flow between parallel rotating disks, within the context of establishing 
asymmetric solutions. This has been recently carried out by Parter & Rajagopal 
(1984), who prove the existence of a one-parameter family of solutions for flow 
between two disks rotating about a common axis, or about distinct axes. In  the case 
of rotation of the disks about distinct axes, but with the same angular velocities, 
Abbot & Walters (1970) have exhibited an exact solution, Although they restricted 
themselves to midplane symmetry, it is clear that a one-parameter family, as proved 
by Berker (1979) is also possible in their problem as suggested by the analysis of 
Rajagopal & Gupta (1981). Berker’s solutions and those of Abbot & Walters belong 
to the class of pseudoplane flows which have been studied earlier by Berker (1936). 
The flow between disks rotating about non-coincident axes with equal angular 
velocity has relevance to the flow that occurs in the orthogonal rheometer, an 
instrument used to characterize the material moduli of fluids. Such flows are special 
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in that they are motions with constant principal relative stretch history. They have 
been studied in considerable detail (Rajagopal 1981 ). Asymmetric solutions identical 
to Berker's in structure have also been obtained in the case of flow due to porous 
plates rotating with the same constant angular velocity about a common axis 
(Rajagopal 1984) and also in the case of a certain class of non-Newtonian fluids 
(Rajagopal 1982). 

For the form of the velocity field sought, it is found that the set of governing 
equations contains the nonlinear equations of axisymmetric flow and two coupled 
linear equations, the coefficients of which depend on the solution of the axisymmetric 
problem. Thus whenever there is a numerical solution to  the Karman problem, we 
can proceed to determine the asymmetric solution numerically, by virtue of the 
analysis of Parter & Rajagopal (1984). 

I n  this paper we present asymmetric solutions for both coincident and non- 
coincident axes of rotation at two values of the Ekman number E = & and & 
and a t  relative disk rotations s = 0.8, 0 and -0.25. 

The streamlines of the Karmin flow { F , G , H )  are equiangular spirals in each 
z = constant plane, cutting the radius a t  the angle tan-' [ G ( z ) / F ( z ) ] .  The asymmetric 
flow that is investigated here is the result of superposition, in each z = constant plane, 
of the Karman flow and a rigid-body translation, the translation, however, being 
different from plane to  plane. In  midplane the translational velocit,y is arbitrary : 
when made non-dimensional with (vw): its Cartesian components are (0, -C}, where 
G is an arbitrary constant. I n  other z = constant planes the non-dimensional 
translational velocity has Cartesian components {g (z ) ,  -f(z)}. The functions g ( z )  and 
f(z) are defined by variable-coefficient linear ordinary differential equations, the 
coefficients of which depend on the Karman solution {G(z) ,  F(z ) }  and on the constant 
G. Thus symmetric solutions of the Karman problem are never isolated when 
considered within the scope of the full Navier-Stokes equations ; there are asymmetric 
solutions in every neighbourhood of the Karman solutions. 

The asymmetric flow under discussion possesses, in each z = constant plane, a point 
of stagnation. The distance between the axis of rotation and the stagnation point 
depends, for a given Kirman flow, on t'he value of the constant C. The locus of the 
stagnation points is a three-dimensional curve with endpoints on the axis of rotation 
at the disks, or, in the case of distinct axes, on the axes of rotation where those 
intersect the disks. Stagnation here is defined by u = u = 0. 

2. Governing equations 
The flow field is bounded by two parallel disks of infinite radii, located at x 3  = 0 

and x3 = d respectively in the cylindrical polar coordinate system {xl, x 2 ,  x 3 } .  We 
define another, non-dimensional, coordinate system ( r ,  8 , ~ ) .  where r = x l / d ,  8 = x2  
and z = x 3 / d .  

The classical assumptions for the velocity field for flow of an incompressible 
Newtonian fluid between the disks rotating about coincident axes with constant (but 
differing) angular velocity ol = w and w2 = so, can be written as 

u = x l w F ( z ) ,  2, = xloG(z) ,  ZC' = d w m q z ) .  (1) 

div u = 0, ( 2 )  

Here v = {u, z j ,  w} is the velocity and E is thc Ekman number. The velocity satisfies 
the constraint 

provided that we allow 
F ( z )  = -$E$H' 
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Under the assumptions (1) and (3) the Navier-Stokes equations reduce to 

@iH]V-HH"'-4E-1GG = 0, B:G"+H'G-@H= 0. (4a,b) 

H ( 0 )  = H'(0) = 0,  G(0)  = 1, H ( 1 )  = H'(1) = 0,  G(1) = S. (5a,b) 

The appropriate boundary conditions are 

In  this paper we follow Parter & Rajagopal (1 984) and seek solutions to  the equations 
of motion and continuity in the more general form :t 

1 
r 

u = z lw{F(z )+-B[g( z )  cosO-f(z)sin8]}, 

(6b) 

w = dwBH(z ) .  (6c) 

1 
r 

v = x 'w{G(z)--E~[g(z)  sinO+f(z) C O S ~ ] } ,  

If H = 0 and G = 1 we have a velocity field of the form described by Berker (1979). 

The incompressibility constraint ( 2 )  again leads to  the condition (3), but now the 

BH"'-HH+$H'2-2E--lG2+2E-1k = 0, EiG+H'G-HG' = 0 ,  (7a ,b )  

And, iff  = 0 and g = 0, we recover KarmQn's (1921) assumption. 

Navier-Stokes equations yield a set of four ordinary differential equations : 

&f ' I r  - Hf 'I - + + H f  + E-i (Gg ) ' = 0, 

~g"-Hg"-~H'g '+~Hg-EE- : (Gf l '  = 0. (7 c ,d )  
The boundary conditions are 

H(0)  = H'(0) = 0, G(0) = 1, (8 a )  

f ( 0 )  = 0, g(0) = - K E - : ,  (8 b) 

H ( l )  = H'(1) = 0, G ( l )  = S, (8c) 

f(1) = 0, g(1) = ME-:, (8 4 
f ( i )  = c, g(+) = 0. ( 8 e )  

Here C is a non-dimensional arbitrary constant and K = a/2d is the non-dimensional 
distance between the (non-coincident) axes of rotation. Also note that ( 7 a )  is obtained 
from (4a) by integration, k being the integration constant. k is also the eigenvalue 
of the boundary-value problem (7), (8). 

Parter & Rajagopal (1984) show that whenever there is a solution to the Karman 
problem (7a ,  b ) ,  (8n,c)  there is also a solution of the system (7c,d), ( 8 b , d , e )  for each 
C. Thus symmetric solutions of the problem of flow between parallel plates rotating 
about a common axis or about distinct axes are never isolated: there are asymmetric 
solutions arbitrarily close by. 

For K = 0 and s = 1 the above set of equations represents a one-parameter, viz C, 
family of solutions for asymmetric flow between disks rotating about a common axis. 
The symmetric component of the flow is rigid-body motion when H ( z )  = 0 and 
G(z)  = 1. In this case ( 7 c , d )  reduce to 

,f'''+EPly' = 0, y"'-&-'f' = 0, (9a.h) 

t iVe adopt here the nomenclature of Holodniok d a2 (1977) ,  as being more convenient for 
comparison with the existing numerical v ork 
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f(0) = d o )  = 0 ;  f (1)  = g(1) = 0, (10a) 

j(4) = c, g(4) = 0. (lob) 
and the midpoint conditions 

Equations (9) and (10) were first given by Berker (1979), who also published the exact 
solutions to these equations. Thus rigid-body motion is imbedded in Berker’s class 
of solutions and is given by C = 0. Berker’s solutions correspond to flows such that 
in any z = constant plane the streamlines are concentric circles. The locus of the centre 
of these concentric circles is given by x =f(z) and y = g(z ) ,  where {x, y, z }  are 
non-dimensional orthogonal Cartesian co-ordinates located in the axis of rotation, so 
that the locus of the centre of rotations intersect the z = plane a t  the point {C, 0, +}. 
The flow field is a special subclass of the pseudoplane flows which have been studied 
by Berker (1936). When F ( z )  = 0, G(z)  = 1 and the velocity field is given by (6), the 
flow is thc superposition of Berker’s solution and the rigid-body rotation of the 
Karman problem ; the point {C, 0, +} in this case moves on a closed circular path with 
velocity Cdw. 

3. Numerical method 
We intend to approximate { H ( z ) ,  G ( z ) , f ( z ) ,  g(z) } ,  which is given only implicitly as 

solutions of (7 )  and (S), by piecewise polynomial functions. Thus, following de Boor 
(1978), we partition the interval [0,1] as 

n:O = z1 < z2 < ... < z1 < zl+l = 1.  

Let pl(z), ..., p l ( z )  be any sequence of 1 polynomials, each of order k (i.e. of degree 
< k), and denote the collection of all piecewise polynomial functions h(z) by Pktn. 

Pk, = {h ( z ) :  h(z) = pi (z )  if X E  [ z i ,  z ~ + ~ ] ,  1 < i d Z}. (11)  
Pk,= is a linear space, and since there are 1 subintervals the dimension of Pk,n is kl. 
Consider now subspaces Sk ,  u ,  of Pk9 generated by imposing smoothness constraints 
on elements of Pk,n at the interior breakpoints zi, 2 < i < 1. Let u = { u ~ } : = ~  be a 
non-negative integer sequence, with ui < Ic, all i ,  where ui denotes the smoothness 
index of the piecewise polynomial subspace Sk,n,v  a t  the breakpoint zi, so that 
h( j ) ( z t )  = h(j)(z;), 0 < j < vi- 1. Then the dimension N of the subspace L S k ,  n, is given 
by 1 

dim Sk,n,u = k +  (k-ui) .  (12) 
i = 2  

We now construct a basis for Sk, =, such that each element of the basis has local 
support and each element is non-negative. 

The space Sk, n,  is a space of polynomial splines, and a basis of the above type is 
called a B-spline basis. To generate such a basis, we consider divided differences of 
order k of the truncated power function (z- t ) ; - l  = max [ ( z - t ) k - l , O ] .  But direct 
evaluation of the B-spline Bi from its definition is unsatisfactory, e.g. there is loss 
of significance during computation. It is more expedient to employ the recurrence 
relation (de Boor 1978) 
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Here t = {ti}::” is any non-decreasing sequence such that 

(i) t, < t2  6 ... < t ,  < z1 and zlfl 6 tN+1 6 ... < t N + k ;  

(ii) the number zi, 2 < i < 1 ,  occurs exactly di = k -  vi times in t .  
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The sequence B,, B,, . . . , BN of B-splines of order k for the knot sequence t is a 
basis for 8,. ~, ”, according to the Curry-Schoenberg theorem. The choice oft translates 
the desired amount of smoothness a t  a breakpoint zi ,  and the theorem permits 
construction of a B-spline basis for any particular piecewise polynomial space fl,, s, ”. 

The B-splines thus defined provide a partition of unity : 

B&) >, 0,  1 6 i 6 N , ]  

i=l 

Other relevant properties of B-splines are 

I n  the present calculations we employ a cubic B-spline basis, k = 4, and a knot 
sequence 

1 
z1 = t ,  = t ,  = t ,  = t 4 ,  
22 = t , ,  

21 = t , ,  
‘l+l = t N + l  = tN+2  = tN+3  = tN+41 

and seek solutions of (7)  in the weak form 

I N N 

i=l  i=l 
f ( 4  = c fiBi(Z), g(z)  = c g , B , ( z ) .  

These expansions can be forced to satisfy the boundary conditions (8 a, b )  in the 
strong form via the spline properties (14). This yields 

N-2 N-1 

H ( z )  = C. HnBn(z ) ,  G ( z )  = Bi(z) +sBN(z)  + Z GnBn(z), 
n=3 n=z 

N-1 N - 1  

n=z n=z 

while the midpoint conditions ( 8 c )  assume the form 

n-z n=z 

I n  the application of Galerkin’s method, the expansions (17)  are substituted into (7). 
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The resulting equations are multiplied through by the test sets ~ ~ , r ~ , r ~  and rg 
respectively : 

] (19)  
TH = { B i ( Z )  : 3 < i < N -  I } ,  7G = { B j ( Z )  : 2 < j  < N -  I}, 

T~ = {Bk(z):  2 < k < N-21, ~g = (B,(z):  2 < l < N - 2 ) .  

Integration over the domain 0 < z < 1 leads to the following nonlinear algebraic 
system : 

N N  

( 2  ,<I < N - 2 ,  2 < m < N - 1 ,  2 < n <  N - 2 ,  2 dip < N - 2 ) .  

Implicit in (20) is that 

H ,  = H ,  = H N  = HN--l = 0 ,  G ,  = 1, GN = S, 

fi = f N  = 0, g, = -KE-+, g N  = SKE-:. 

The Galerkin coefficients zj;), . . . , Z& are defined as follows : 

0 

Z$) = s' Bjb) ( z )  B f )  ( z )  dz, 

a = a+b+c+ 1 (if b =I= 0) ,+2  (if a $: 0). 

The nonlinear algebraic system consisting of (18) ,  (20)  and (21)  is solved via a 
Newton-like method on the PDP-10 of the University of Pittsburgh. 

The accuracy of the Galerkin B-spline formulation has been discussed elsewhere 
(Szeri et al. 1 9 8 3 ~ ;  Szeri & Giron 1984). Here we report on two studies. At E-l = 100 
the equations of axisymmetric flow (7a ,  6 )  seem to possess a unique solution, leading 
to a unique value of the constant k (Holodniok et al. 1977). We calculated this solution 
for various dimensions N of the approximating subspace. The resulting k-values are 
shown in table 1 .  I n  tables 2 and 3 we display solutions for f(z) and g ( z )  obtained a t  
E-l = 275 and F ( z )  = 0, G(z )  = 1.0, corresponding to rigid-body rotation of the 
axisymmetric component of the flow. The solutions reported here are the exact 
solution of Berker (1979),  and our numerical solutions of ( 7 )  a t  N = 43 and 63 
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N k 

13 0.802 886 
23 0.803 891 
33 0.803 96 1 
43 0.803 977 
63 0.803986 

TABLE 1. Dependence of k on N ( E l  = 100, s = 0.8, K = 0 )  

Exact - 

z (Berker 1979) 

0 0.000 00 
0.1 0.883899 
0.2 1.07250 
0.3 1.03307 
0.4 1.00479 
0.5 1 .00000 

Numerical 

N = 43 N = 63 

0.00000 0.00000 
0.883 897 0.883899 
1.072 50 1.072 50 
1.033 07 1.03307 
1.004 79 1.004 79 
1.000 00 1.00000 

TABLE 2. Comparison of solutions: f ( z )  ( E l  = 275, F = 0, G = 1, C = 1 ,  K = 0) 

Exact 
z (Berker 1979) 

0 0.000000 
0.1 0.288866 
0.2 0.071 361 
0.3 -0.008291 
0.4 -0.006282 
0.5 0.000000 

Numerical 

N =  43 N = 63 

0.000 000 0.000000 
0.288867 0.288884 
0.07 1 362 0.071 359 

-0.008 291 -0.008292 
- 0.006 282 -0.006282 

0.9095 x -0.4547 x lo-'' 

TABLE 3. Comparison of solutions: g(z )  (K1 = 275, F = 0, G = 1, C = 1, K = 0) 

respectively. The numerical solutions a t  N = 63 displays a better than 5-digit 
accuracy, which we consider as adequate. 

The calculations reported in this paper were all performed with N = 63 in (7 ) ,  
leading to a 243-equation mathematical model of the flow in (7 ) .  

4. Results and discussion 
4.1. Common axis of rotation 

The calculations reported here were performed with relative disk rotations s = 0.8, 
0 and -0.25 a t  two values of the Ekman number E = 1 100 and 1 2 7 5 '  

Figure 1 shows the locus of stagnation points r for Berker's (1979) solution at  
E = A. This curve is defined by x = f ( z ) ,  y = g(z) ,  and r,, is its projection onto the 
( x ,  y)-plane. r is the centre of concentric circles, in each z = constant plane, which 
are the streamlines of Berker's flow between corotating disks. 
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1 :5 

FIGURE 1. Locus of stagnation points; Berker’s solution, /C = 2!;5, 8 = 1 
(r = locus, r,, = projection onto (z, y)-plane). 
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FIGURE 2. Branch I a t  E = &, s = 0.8, K = 0, C = 1 

At E= = &j and s = 0.8 we find the Holodniok et al. (1971) solution to the Karman 
problem (4a ,  b ) .  The corresponding , f ( x )  and g ( z )  functions obtained a t  G = 1 are 
shown plotted in figure 2, while the complete solution is contained in table 4. The 
functions f(z) and g(z )  show a fair degree of symmetry about the z = f plane and when 
added to the Karman solution a t  0 =an (the position 0 = 0 being arbitrary) and 
at various radial positions, r = 00,10,1, they produce the dimensionless velocity 
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2 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

F G H f g 
0 1 .000000 0.000000 0.000000 0.000000 

0.314395 X lo-' 0.919384 -0.492656 x lo-' 0.549652 0.290994 
0.135604 X lo-' 0.892 197 -0.953676 x lo-' 0.864356 0.234692 
0.155853 X lo-' 0.891471 -0.108498 0.978326 0.1 10850 

-0.898241 x lop3 0.894725 -0.108083 0.997869 0.259424 x lo-' 
0.366803 x 0.896623 -0.107312 1.000000 1.181899~ lo-" 
0.145854 x lo-' 0.898954 -0.109446 1.009070 0.324630 x 10-' 

-0.181262~ lo-' 0.902919 -0.110300 0.996678 0.125329 
-0.148588 x lo-' 0,901788 -0.954889 0.882594 0.258369 
-0.314345 X lo-' 0.874096 -0.475106 0.558464 0.316277 

0 0.8 0 0.000000 0.000000 

TABLE 4. Branch I a t  E-' = 100 (N = 63, s = 0.8, C = 1, K = 0) 

0.05 

U 

0 

-0.05 

-0.10 
0:s 

z 

FIGURE 3. Radial component of non-dimensional velocity, U = u/xlQ; branch I, 
at E = &, s = 0.8, K = 0, C = 1, 0 = fn. 

components U = u/xlw and V = v/x% of figures 3 and 4. As r + 00 the flow is the 
axisymmetric Karman flow, indicating a boundary-layer structure of the Batchelor 
type (Batchelor 1951). The core tangential velocity is intermediate between the 
rotational velocities of the two disks. The radial component of the velocity is almost 
antisymmetric with respect to the channel centreline: the fluid adjacent to the fast 
disk is thrown outward, the core velocity is almost zero and return flow occurs a t  
the slow disk. This flow picture changes significantly upon moving inwards, towards 
the centre of rotation. The core acquires a constant radial velocity with decreasing 
r (figure 3),  while its tangential velocity slows down almost to the rotational velocity 
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FIQURE 4. Tangential component of non-dimensional velocity V = v/xlB: branch I 
at E = &, s = 0.8, K = 0, C = 1, 0 = an. 

FIGURE 5. Branch 1 at E = ft; s = 0.8, K = 0, C = 1. 
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FIGURE 6. Radial component of non-dimensional velocity U = u /x lQ ;  branch I 
a t E = & , , s = 0 . 8 , K = O , G =  l , B = t r r .  

FIGURE 7. Tangential component of non-dimensional velocity I; = v/xlQ; branch T 
a t  E = A, s = 0.8, K = 0, C = 1 ,  0 = 



1 .2  

f 

1 .a 

0.8 

0.6 

0.4 

0.2 

0 

-0.: 

Asymmetric $ow between parallel rotating disks 213 

1 .o 
V 

I 

0.9 

0.8 
0 

z 

FIGURE 8 

' I ' '  1 '~ 

0.5 1 
z 

FIGURE 9 

FIGURE 8. Development of radial component of non-dimensional velocity U = u/x112; 
b r a n c h I a t E = & , r = l . O , s = 0 . 8 , K = O , C = l .  

FIGURE 9. Development of tangential component of non-dimensional velocity V = v/xls); 
b r a n c h I a t E = & , , r = l . O , s = 0 . 8 , h - = O , C = l .  
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FIGVKE 10. Branch 11 at h' = d5, 8 = 0.8. K = 0. (" = 1 
FIGURE 11. Branch I V  at E = &, s = 0.8, K = 0, C = 1 
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of the slow disk (figure 4). There is, of course, an infinity of solutions, one for each 
value of C. 

The Karman problem seems to possess three distinct solutions a t  E-l = & and 
s = 0.8, as already reported by Holodniok et al. (1977). These solutions are identified 
by Holodniok et al. as branches I, If and 1V. 

Branch 1 a t  E = & is not unlike the solution already discussed a t  E = &j. (In fact 
these two solutions are of the same branch, as may be shown by continuation in E.) 
But the boundary-layer structure is more pronounced a t  E-l = 275, as may be seen 
from figures 6 and 7 a t  r - f  00. The correspondingf(z) and g(z)  a t  C = 1 are plotted 
in figurc 5. When these functions are superposed on the Karman solution a t  6' = ix, 
C = 1 and various non-dimensional radial positions r ,  we obtain figure 6 for 
non-dimensional radial velocity and figure 7 for non-dimensional tangential velocity. 
At r+  co the flow is, again, the symmetric Karman flow: the core radial velocity is 
almost uniformly zero and there are two boundary layers, one a t  the fast disk 
(outflow) and the other a t  the slow disk (inflow). The core rotates uniformly a t  what 
appears to be the mean disk angular velocity. On moving inwards along the radius 
B = in, the core acquires an inward velocity and its rotation is slowed to close to 
the angular velocity of the slow disk. Figures 8 and 9 indicate the development of 
the velocity profile when the observer is moving along the unit circle T = 1 .  From 
B = 0 the position 6' = 0 being arbitrary, moving in the direction of increasing 6' we 
find that the core, which had negligible radial velocity a t  8 = 0, acquires an inward 
velocity and its rotation is speeded up towards the mean angular velocity of the disks. 
From 6' = in onward, the trend changes: the core loses its inward velocity but its 
rotational velocity keeps increasing. In  the third quarter, x < 6' < ;x, still moving 
in the positive direction, increasing 6' results in a strengthening of the radial outflow 
and in a weakening of the core's rotation. For B E  ($, 2x) the radial outward velocity 
of the core is lost and its rotation is retarded gradually, as 6' increases. Development 
of the boundary layers may similarly be discussed. 

The other two solutions of the Karman problem obtained a t  E = &. s = 0.8, result 
inf(z) and g(z ) ,  with C = 1 ,  as shown in figure 10 for branch I1 and figure 11 for branch 
IV. The corresponding non-dimensional velocity profilcs are displayed in figures 
12-15. The physical interpretation of these two branches is not obvious. These 
solutions are of 'two-cell' type, where a cell is identified as a region that is bounded 
by z = constant planes on which the axial velocity vanishes (Nguyen et al. 1975). 
Neither the radial nor the tangential velocity seem to vary in a qualitative sense on 
moving inwards from r = 00, along the radius 6' = in. At any rate, these solutions 
were found to be unstable to infinitesimal disturbances at all radial positions (Szeri 
et al. 1983a), and are thus not thought to be easily reproducible in the laboratory. 

In  figures 1G18 we present solutions for one stationary disk s = 0 at E = &. These 
were obtained by continuation in s from the previously discussed s = 0.8, branch I 
solution. Figure 16 displays the functions f ( z )  and g ( z ) ,  calculated with C = 1 .  The 
non-dimensional radial velocity is shown in figure 17, indicating almost no boundary- 
layer structure. There is more of a core in evidence when plotting tangential velocity, 
as in figure 18. There is little q~al i t~at ive change in either 11 or V when moving from 
r = 00 inwards, along the line B = in, towards the axis of rotation. 

At s = 1 branch I supplies only the trivial (rigid-body) solution (Holodniok et al. 
1981). The functions f ( z )  and g ( z )  were already given by Berker (1979), and are 
recorded in tables 2 and 3. 

Continuation in s is time-consuming.? I n  the interval 0.8 > s > 0 we were forced 
t By continuation we mean the procedure whereby the solution obtained at s = s,, is used to  s tar t  

the Newton iteration at s = so + A s  
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FIGURE 12. Radial component of non-dimensional velocity U = u/x'sZ; branch I1 
a t  E = &, s = 0.8, K = 0, C = 1 ,  0 = $c. 

FIGURE 13. Tangential velocity component of non-dimensional velocity V = v/x 'Q; branch TI 
a t  E = &, s = 0.8, K = 0, C = 1, 8 =an. 
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a t  E = &, s = 0.8, K = 0, C = 1, 0 = an. 
FIGURE 15. Tangential component of non-dimensional velocity V = v/x'sZ; branch IV a t  

E = A, s = 0.8, K = 0, C = 1, 0 = an. 
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FIGURE 16. Branch I a t  E = &,, s = 0, K = 0, C = 1. 
FIGURE 17. Radial component of non-dimensional velocity U = u/xlQ; branch I a t  E = &,, 
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FIGURE 18. Tangential component of non-dimensional velocity V = w/xlQ; branch I 
at  E = &, s =  0, K = 0 ,  C =  1 ,  0 = i n .  

FIGURE 19. Branch I a t  E = &, s = -0.25, K = 0, C = 1 .  
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FIGURE 20. Radial component of non-dimensional velocity U = u/x'SL; branch I 
a t  E = &, s = -0.25, K = 0, C = 1 ,  0 = In 4 '  

FIGURE 21. Tangential component of non-dimensional veocity V = v/xlQ; branch 1 
at E = &, s = -0.25, K = 0, C = 1 ,  0 =in. 

FIGURE 22. Locus of stagnation point; branch I a t  E = &, s = 0.8, C = 1, K = 0 
(r = locus; r,, = projection onto @y)-plane). 

to use a step size As = 0.05 in order to reach convergence of the Newton procedure 
in not more than 30 iterations (N = 63). For s < 0 the step size had to be decreased: 
to reach s = -0.18 from s = 0 we required 18 steps, or As = 0.01, for convergence 
within 70 iterations, and a total of 65 minutes CPU time on the PDP-10. We report 
here on the solution a t  s = -0.25. 
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FIGURE 23. Variation of wall stress with radial position; branch 
E = &, s = 0.8, K = 0, 0 = in. 
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Figures 19-21 display the branch I solution a t  E = and s = -0.25 (counter- 
rotating disks). This solution was again obtained from the corresponding solution a t  
s = 0.8 by continuation in s. Figure 19 containsf(z) and g(z),  c! = 1. Figures 20 and 
2 1 show radial and tangential components respectively of the non-dimensional 
velocity at 0 = in and various r-positions. 
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FIQURE 25. Effect of constant C; branch I at E = &,, s = 0.8, K = 0. 
FIGURE 26. Effect of constant C; branch I at E = &,, s = 0.8, K = 0. 
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FIGURE 28. Effect of constant C; branch I at E = &,, s = 0.8, K = 0, r = 1.0, 8 = in. 
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FIQURE 29. Locus of stagnation points; branch I a t  E = &, s = 0.8, C = 1, K = 1 
(T = locus; r,, = projection onto (r ,  y)-plane). 
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FIQURE 30. Non-coincident axes; branch I at E = &, s = 0.8, C = 1, K = 1 .  

Figure 22 is a composite diagram obtained for branch I a t  E = &, s = 0.8. It 
contains the locus r of the stagnation points (u = t i  = 0) and its projections r,,, r,, 
and ruz. 

We define the non-dimensional wall stress TW by normalizing its dimensional 
counterpart with pw. TW is given by 

T~ = rG(z)-E+[g’(z) sinO+f”(z) cosO1. (23) 
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FIQURE 31. Development of radial velocity U = u/xlQ; non-coincident axes; branch I a t  
E = &, s = 0.8, C = 1 ,  K = 1 ,  T = 1. 

FIGURE 32. Development of tangential velocity V = v/x'SZ; non-coincident axes; branch I at 
E = &, s = 0.8, C = 1 ,  K = 1 ,  T = 1.  
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FIQURE 36. Effect of distance between non-coincident axes; branch I 
a t E = & , s = 0 . 8 , C = l , r = l . 0 , 0 = ~ n c .  
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FIGURE 38. Variation of wall stress with polar angle; branch I a t  E = &, 
s = 0.8, K = 1, C = 1, T = 1.0. 

In  figures 23 and 24 we plot ;i, for both upper and lower disks. The wall stress is 
linear in the distance from the centre of rotation, and there is one value of r for each 
8 where the wall stress vanishes on the upper disk; for 8 = in and E = &, this value 
of r is somewhat less than unity. Figure 24 shows the variation of ?, with azimuthal 
position a t  r = 1, E = &. 

The constant Cin (8) is arbitrary; it specifies the midplane value of the y-component 
of the translational velocity that (6) superposes on the Karman solution. Thus C 
specifies, for a given Karman flow, the distance between the rotational axis and the 
stagnation point, for any z = constant plane. Since this relationship between axis and 
stagnation point is not trivial, it  is of interest to study the effect that the value of 
C has on the flow. Figures 25-28 contain solutions a t  three distinct values of C, 
showing that large C enhances the boundary-layer structure of the flow. 

4.2. Non-coincident axes of rotation 
The solutions that we report here were obtained for branch I a t  s = 0.8. The axes 

of rotation are placed a t  twice the film thickness apart, and are located in ( t , O , O )  
for the lower disk and in (t, n, 1 )  for the upper disk in the non-dimensional { r ,  8, z }  
coordinate system. Thus 8 = 0 in (6) is no longer arbitrary. The locus Tof  stagnation 
points for axes of rotation separated by twice the film thickness is shown in figure 
29 for E = &,. Figure 30 shows the functionsf(z) and g ( z )  a t  E = A. To see the effect 
of non-coincidence of axes, figure 30 is to be compared with figure 2, which was 
obtained a t  K = 0 and the same value of the Ekman number. Both f(z) and g(z)  are 
almost antisymmetric with respect to the z = t plane. They are superposed on F ( z )  
and G(z) to yield the non-dimensional velocity of figures 31 and 32. Moving along the 
unit circle r = 1 from 8 = 0 towards 8 = in, the velocity of the core seems to change 
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little. What change there is is concentrated in the boundary layers. The principal 
effect of f(z) and g ( z )  is to change the wall stress. Figures 33 and 34 depict the 
variations of f(z) and g(z )  respectively with the offset K for fixed values of E and C. 
The variations of the velocities U and V ,  with the offset K ,  are given in figures 35 
and 36. Finally, in figures 37 and 38, the non-dimensionalized wall shear stresses 
at the upper and lower disk are plotted as functions of r and 8 respectively a t  
E = &, K = 1 and C = 1. 

5.  Summary 
We conclude with a few observations on the implications of the results established 

and discuss some of the questions that remain unanswered. 
On the basis of the work of Parter & Rajagopal (1984), we have exhibited 

numerically, for the first time, asymmetric solutions for the flow between infinite 
parallel plates, rotating about a common axis or about distinct axes. The existence 
of such solutions is clearly due to the fact that the plates are assumed to be infinite 
in extent. Interestingly, these asymmetric solutions are not a feature of high- 
Reynolds-number flow but are present even a t  low Reynolds numbers. The stability 
of these asymmetric solutions warrants close scrutiny. Contrary to intuitive expect- 
ation, the analysis of Berker (1979) for his special class of flows answer the question 
of stability in the affirmative. The stability of the flows exhibited in this paper to 
infinitesimal disturbances is being carried out. The flow and the stability for the 
single-disk problem is also being studied in detail. 
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